Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2019  |  Volume : 29  |  Issue : 2  |  Page : 45-51

The Intrusive nature of epicardial adipose tissue as revealed by cardiac magnetic resonance

1 Cardiac Imaging Department, Fondazione Cardiocentro Ticino, Lugano, Switzerland
2 Department of Cardiac Morphology, Royal Brompton Hospital and Imperial College London, London, UK

Correspondence Address:
Laura Anna Leo
Division of Cardiology, Imaging Department, Fondazione Cardiocentro Ticino, Via Tesserete 48, CH 6900, Lugano
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jcecho.jcecho_22_19

Rights and Permissions

The epicardial adipose tissue (EAT) refers to the deposition of adipose tissue fully enclosed by the pericardial sac. EAT has a complex mixture of adipocytes, nervous tissue, as well as inflammatory, stromal and immune cells secreting bioactive molecules. This heterogeneous composition reveals that it is not a simply fat storage depot, but rather a biologically active organ that appears playing a “dichotomous” role, either protective or proinflammatory and proatherogenic. The cardiac magnetic resonance (CMR) allows a clear visualization of EAT using a specific pulse sequence called steady-state free precession. When abundant, the EAT assumes a pervasive presence not only covering the entire epicardial surface but also invading spaces that usually are almost virtual and separating walls that usually are so close each other to resemble a single wall. To the best of our knowledge, this aspect of cardiac anatomy has never been described before. In this pictorial review, we therefore focus our attention on certain cardiac areas in which EAT, when abundant, is particularly intrusive. In particular, we describe the presence of EAT into: (a) the interatrial groove, the atrioventricular septum, and the inferior pyramidal space, (b) the left lateral ridge, (c) the atrioventricular grooves, and (d) the transverse pericardial sinus. To confirm the reliability in depicting the EAT distribution, we present CMR images side-by-side with corresponding anatomic specimens.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded120    
    Comments [Add]    
    Cited by others 1    

Recommend this journal