Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 28  |  Issue : 2  |  Page : 90-94

Measurement of mouse heart rate variability using echocardiographic system


1 Laboratory of Translational Physiology, Nove de Julho University, Sao Paulo, Brazil; Institute of Neuro-Immune Medicine, Nova Southeastern University, FL, USA
2 Institute of Neuro-Immune Medicine, Nova Southeastern University, FL, USA; Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
3 Institute of Neuro-Immune Medicine, Nova Southeastern University, FL, USA; Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Miami VA Healthcare System, FL, USA
4 Institute of Neuro-Immune Medicine, Nova Southeastern University; Miami VA Healthcare System, FL, USA
5 Institute of Neuro-Immune Medicine, Nova Southeastern University, FL, USA
6 Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
7 Laboratory of Translational Physiology, Nove de Julho University; Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo; Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil

Correspondence Address:
Mariana Morris
Nova Southeastern University, Institute Neuro Immune Medicine, 3440 S. University Dr, Fort Lauderdale, Florida 33328
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcecho.jcecho_51_17

Rights and Permissions

Aim: We employed an echocardiographic (ECHO) system as the backbone for the collection of electrocardiogram (ECG) and heart rate variability (HRV) data. The system was tested using an exercise model in which C57 male mice were exposed to sham or forced wheel running. Methods: Peak/peak (RR) interval was recorded over a 3 min period using the ECG platform of the ECHO system. Isoflurane-anesthetized male mice were divided into two groups (n = 8/group): sedentary (S) and forced wheel trained (T). HRV was analyzed in time and frequency domains (Fast Fourier Transform). Exercise training (T) was performed on a motorized wheel at low intensity 1 h/day, 5 days/week, 8 weeks duration. Cardiac morphometry and function were analyzed using ECHO while ECG was the basis to measure HRV. The sampling rate was 8000 Hz. Results show that the trained mice presented a reduction in heart rate as compared to the sedentary group. This was associated with lower cardiac sympathetic and higher parasympathetic modulation leading to an improved sympathetic/parasympathetic ratio (low-frequency band/high-frequency band). The trained group showed a reduction in isovolumetric relaxation time, reduced myocardial performance index, increased relative wall thickness, and left ventricle mass when compared to the sedentary group. Conclusion: Results document the utility of combining the ECHO and the ECG platform, allowing for the dual measurement of autonomic and cardiac function in mice.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed568    
    Printed49    
    Emailed0    
    PDF Downloaded38    
    Comments [Add]    

Recommend this journal