Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2016  |  Volume : 26  |  Issue : 4  |  Page : 115-119

Addition of exercise to dipyridamole stress echocardiography in order to carry on the ischemic cascade: Role in the diagnosis of coronary artery disease and prognostic value


1 Department of Cardiology, Camposampiero Hospital, Padua, Italy
2 Department of Cardiology, Ospedali Riuniti Padova Sud, Monselice, Italy
3 Department of Cardiology, San Donà di Piave Hospital, San Donà di Piave, Italy
4 Department of Cardiology, University of Padua, Padua, Italy
5 Department of Cardiology, Santa Maria degli Angeli Hospital, Pordenone, Italy

Date of Web Publication13-Oct-2016

Correspondence Address:
Pietro Offelli
Ospedali Riuniti Padova Sud, Via Albere 30, Monselice
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2211-4122.192173

Rights and Permissions
  Abstract 

Background: Sensitivity of dipyridamole stress echocardiography (SE) is often lower than required. The aim of the present work is the evaluation of the association of dipyridamole and exercise echocardiography. Methods: From June 2007 to January 2011, 259 consecutive patients referred to Camposampiero Echocardiography Laboratory underwent SE. Stress protocol started with dipyridamole infusion of 0.84 mg/kg over 6 min. In patients without a new dyssynergy after dipyridamole, SE was carried on with supine exercise. If endocardial border detection was suboptimal, ultrasound contrast agent was used. Coronary angiography was performed in positive patients. The events recorded during the follow-up were cardiac death, nonfatal myocardial infarction (hard events), and coronary revascularization. Results: Of 259 patients, 74 had a positive result: 37 were positive after infusion of dipyridamole, and 37 became positive during exercise. All 74 positive patients underwent coronary angiography: 67 had significant coronary artery disease (36 positive with dipyridamole, and 31 positive with exercise), and 7 had not significant artery disease. In positive patients, the coronary revascularizations were 40. Furthermore, 3 of the 185 negative patients underwent coronary revascularization. During follow-up of 20 ± 10 months, 6 (8.1%) hard events occurred in positive patients. No hard event was observed in negative patients. Conclusions: Dipyridamole SE with the addition of exercise can be proposed as a strategy to carry on the ischemic cascade and to identify the patients who elude the dipyridamole alone SE. A negative result is suggestive of a very good prognosis, free from hard events at 20 ± 10 months.

Keywords: Coronary artery disease, dipyridamole, exercise echocardiography, stress echocardiography


How to cite this article:
Piovesana P, Offelli P, D'Ambrosio F, De Conti F, Scarabeo V, Panfili M, Antonini-Canterin F. Addition of exercise to dipyridamole stress echocardiography in order to carry on the ischemic cascade: Role in the diagnosis of coronary artery disease and prognostic value. J Cardiovasc Echography 2016;26:115-9

How to cite this URL:
Piovesana P, Offelli P, D'Ambrosio F, De Conti F, Scarabeo V, Panfili M, Antonini-Canterin F. Addition of exercise to dipyridamole stress echocardiography in order to carry on the ischemic cascade: Role in the diagnosis of coronary artery disease and prognostic value. J Cardiovasc Echography [serial online] 2016 [cited 2020 Apr 1];26:115-9. Available from: http://www.jcecho.org/text.asp?2016/26/4/115/192173


  Introduction Top


Stress echocardiography (SE) is based on the application of a pharmacological or physical stress able to induce myocardial ischemia that can be observed as a new regional wall motion dyssynergy. [1] The main pharmacological stressors used are dipyridamole that causes flow maldistribution and dobutamine that causes an increase of the myocardial oxygen demand. [2],[3] The first step of the ischemic cascade is a flow maldistribution. Subsequently, hypoperfusion causes metabolic alterations, and diastolic dysfunction occurs. Regional wall motion dyssynergies are observed later, followed by electrocardiographic (ECG) changes and chest pain. [4]

Perfusion scintigraphy investigates the earlier step in this cascade: from this feature comes the high sensitivity of this technique. On the other hand, both the law [5] and the referral guidelines for medical imaging [6] recommend a justified, optimized, and responsible use of testing with ionizing radiation. This has encouraged the use of nonionizing techniques (especially in Europe) as SE that had a great development and reached accuracy comparable to scintigraphy. Nevertheless, we must observe that the rise in accuracy is given by a higher specificity while sensitivity is often not so bright, in particular, if we consider SE in daily clinical practice out of scientific trials.

One of the first strategies adopted to increase the sensitivity was the association of atropine if no end-point was reached after infusion of dobutamine [7] or dipyridamole. [8] Atropine promotes the ischemic cascade in a different way as it causes an increase of heart rate (HR), without inotropic action or vasodilatation. It is not surprising that high-dose dipyridamole given alone over 6 min has higher sensitivity than standard dose over 10 min with the addition of atropine. [9] Furthermore, adverse events as prolonged ischemia or atropine intoxication are possible, especially when it is associated to dobutamine. [10] The association of dipyridamole and dobutamine was also proposed: [11],[12] the combination of these pharmacological stressors gave an increase in sensitivity but did not found application in clinical practice. Nevertheless, these studies underline that a single pharmacological stressor may be insufficient to induce ischemia in a certain number of patients, and further strategies should be adopted to reach sensitivity comparable to nuclear perfusion stress techniques.

The aim of the present work is the evaluation of the association of dipyridamole and exercise, to increase the sensitivity. This association was first proposed by Picano in 1988, [13] but at that time, there were too much technical difficulties and this protocol was no longer used. Now, echocardiography machines give images with higher definition, endocardial border can be enhanced by ultrasound contrast agents, and supine exercise is performed on ergometers that can be inclined laterally, thus increasing the feasibility of this test. This association could be particularly relevant in clinical settings, in which sensitivity has to be high, or in selected occupational classes (i.e., pilots or drivers).


  Methods Top


From June 2007 to January 2011, 259 consecutive patients (179 men, 80 women; mean age [±standard deviation (SD)] 58 ± 12 years) referred to our Echocardiography Laboratory were included in this retrospective observational study. The patients underwent SE for one of these indications: (a) Non conclusive or uninterpretable exercise test result, (b) first step evaluation of nonacute chest pain, (c) functional evaluation in patients with known coronary artery stenosis of unclear significance. Exclusion criteria were a contraindication to dipyridamole and/or inability to exercise. Informed written consent to the test was obtained from all patients. If endocardial border detection was suboptimal, ultrasound contrast agent (Sonovue, Bracco-Byk Gulden, Konstanz, Germany) for left ventricle opacification was used (84 patients, 32%). All patients with positive stress echo result underwent coronary angiography.

Stress protocol

According to the European Association of Echocardiography (EAE) guidelines, [2] stress protocol started with dipyridamole intravenous infusion of 0.84 mg/kg over 6 min (dipyridamole step). [9] In patients with normal (or unchanged) regional kinesis after dipyridamole infusion, SE was carried on with supine exercise (exercise step) with a protocol of 25 W incremental work every 2 min.

Diagnostic end-points (interruption criteria) of SE were: Achievement of target HR; obvious echocardiographic positivity (new or worsening dyssynergy); hypertension with systolic blood pressure (BP) >240 mmHg or diastolic BP >120 mmHg; symptomatic hypotension, with >40 mmHg drop in BP; sustained supraventricular or ventricular arrhythmias; and severe chest pain. New ECG repolarization alterations in the presence of normal or hyperkinetic response were not an interruption criterion. If an echocardiographic positivity (new or worsening dyssynergy) was observed after dipyridamole infusion, a diagnostic criterion was reached and SE was interrupted before exercise.

Exercise step was followed by 2 min of 25 W recovery; then, aminophylline 120 mg was administered to all patients.

The examination was performed under the monitoring of 12-lead ECG, BP, and oxygen saturation. Echocardiographic imaging was performed with iE33 Philips Ultrasound System (Andover, USA), with continuously monitoring and intermittently storing. Left ventricular regional kinesis was stored at baseline, at the end of dipyridamole infusion, at peak exercise, and at recovery with an assessment of a wall motion score index calculated with the 16-segment model of the left ventricle. [14] A quad-screen format was used for comparative analysis.

Coronary angiography in multiple views was performed in 88 patients. A vessel was considered to have significant obstruction if its diameter was narrowed by ≥75% with respect to the prestenotic tract (≥50% for left main).

Follow-up

Follow-up data were collected with reviews of the patient's hospital chart, periodic visits in our outpatient clinic, and telephone interviews with patients and relatives. The clinical events recorded during the follow-up were cardiac death, nonfatal myocardial infarction (hard events), and need for coronary revascularization (surgery or angioplasty). Cardiac death was defined as death due to acute myocardial infarction, heart failure, fatal arrhythmias, or sudden death. The diagnosis of acute myocardial infarction was made on the basis of symptoms, ECG changes, and cardiac enzyme level increase.

Statistical analysis

Values were expressed as the mean ± SD for continuous variables. Continuous variables were compared with the Student's unpaired t-test, whereas differences of categorical variables were assessed by the Chi-square test. A multivariate logistic regression was used to evaluate the association between clinical variables and SE result. P < 0.05 was considered statistically significant.


  Results Top


The study population consist of 259 patients; baseline characteristics are reported in [Table 1]. Of 259 patients, 37 (14.3%) were positive after infusion of dipyridamole, and further 37 (14.3%) became positive during the exercise step: total positive patients were 74 (28.6%). Patients negative at both steps were 185 (71.4%). All 74 positive patients underwent coronary angiography: 67 had significant coronary artery disease. In 36 of 37 patients who were positive at dipyridamole step (without exercise), coronary angiography evidenced the presence of significant coronary artery lesions and only one patient was a false positive in this subgroup. On the other hand, the addition of exercise step allowed to recognize 37 more positive patients: 31 of these had a significant coronary artery disease, and 6 were false positive [Figure 1]. The most part of negative patients did not undergo coronary angiography or coronary CT angiography because the prosecution of the diagnostic pathway with invasive examinations or exposure to X-ray should not be justified.
Figure 1: Stress echocardiography results and angiography results

Click here to view
Table 1: Baseline characteristics of the study population

Click here to view


Univariate analysis of variables in positive and negative patients is resumed in [Table 2]. In multivariate analysis, age, male sex, prior revascularization, and chest pain are independent predictors of a positive result at SE [Table 3].
Table 2: Univariate analysis of baseline variables

Click here to view
Table 3: Multivariate logistic regression analysis

Click here to view


Comparison between positive patients at dipyridamole step and positive patients after addition of exercise [Table 4] shows significant differences in HR at peak, systolic BP at peak, rate pressure product, percentage of HR target reached, increase in HR, and increase in systolic BP.
Table 4: Stress echocardiography parameters in positive patients at dipyridamole step and exercise step

Click here to view


Exercise produced a positive result at 25 W in 7 patients, at 50 W in 10 patients, and at 75 W in 9 patients: in these 26 patients (70% positive exercise patients), test was positive at low workload (75 W or less).

Adverse events that required medical care occurred in three patients (1.2%): A dyspneic crisis with bronchoconstriction and desaturation (89% in ambient) regressed with O 2 , hypotension with presyncope regressed with Trendelenburg position, and sustained ECG alterations in a positive patient with transient chest pain and regional wall motion dyssynergy. On the other hand, headache and heat localized in the face often occurred during dipyridamole infusion (30%-40% patients). Six patients (2.3%) at the end of exercise had a modest vagal reaction, quickly regressed.

In the 74 positive patients, the coronary revascularizations (Percutaneous transluminal coronary angioplasty (PTCA) or coronary artery bypass grafting [CABG]) were 40, most of all in the 1 st month after the SE. In the 37 patients positive at dipyridamole step, revascularizations were 23 (15 PTCA, 8 CABG) and in the 37 patients positive at exercise step revascularizations were 17 (16 PTCA, 1 CABG). Furthermore, 3 (1.6%) of the 185 negative patients underwent coronary revascularization (3 PTCA).

During a mean follow-up of 20 ± 10 months, 6 (8.1%) hard events occurred in positive patients: one patient died before hospitalization planned for coronary angiography, and five patients presented a nonfatal myocardial infraction. No hard event was observed in negative patients.


  Discussion Top


The accelerated dose of dipyridamole is recommended in EAE SE consensus [2] and it is presented as a more sensitive alternative to standard-dose plus atropine. Nevertheless, data from daily clinical practice are not so bright as scientific trials. The proposal of a new stress protocol comes from the remark that sensitivity of SE is often inadequate to stop the diagnostic course in case of a negative result: dipyridamole alone is not able to induce ischemia in a certain number of patients with significant coronary lesions.

Our work shows that the addition of the exercise allowed the identification of 31 patients with significant coronary artery disease that during dipyridamole infusion did not develop dyssynergies; 17 of them underwent coronary revascularization, with a change in the course of their coronary artery disease. An interesting observation is that most part of positive results at exercise step is registered at low workload (70% of positive results were observed at 75 W or less): steal phenomena induced by dipyridamole are a very good substrate for exercise step that increasing myocardial oxygen demand can bring on regional wall motion alteration. [9] The increase of myocardial oxygen demand is caused not only by the increase of HR but also by the increase of BP. After dipyridamole infusion, we observe a modest increase in HR, followed by a stronger increase during exercise. BP instead has a little decrease after dipyridamole infusion and a significant increase during exercise. Hence, BP has a crucial role in exercise step as it generates an effective increase of afterload and systolic subendocardial stress. [15] Furthermore, this inclination at the positive result at low workload gives a reason for the safety of this protocol: few patients (1.2%) required medical intervention, compared with the higher occurrence of complications reported in other stress association (i.e., dipyridamole plus atropine, 3%-4%).

We are aware of the limitations of this work, based on retrospective observational data. After SE, the diagnostic course was different for positive and negative patients: coronary angiography was performed in all positive patients, and only in 14 negative patients, hence for most of the negative patients, we have no information about gold standard diagnostic. On the other hand, ethical and legal motivations give justification of this choice. Hence, we cannot calculate the value of the sensitivity of SE preformed with this association; nevertheless, the exercise step can only make positive a result that was negative at the dipyridamole step (instead positive dipyridamole results are conclusive): It seems evident that the addition of exercise cannot decrease the sensitivity.

From a prognostic point of view, risk stratification cannot be based only on anatomical criteria; randomized trials show that anatomy-guided revascularization, in the absence of inducible ischemia, has a neutral or detrimental effect on survival. [16],[17],[18],[19] In our work only three negative patients (1.6%) required elective coronary angiography and PTCA; none of the negative patients presented hard events.


  Conclusion Top


The addition of exercise can be proposed as a strategy to carry on the ischemic cascade and to identify the patients who elude the dipyridamole alone SE: The flow maldistribution cannot be directly observed; thus, the addition of exercise gives a determinant contribution to develop wall motion alterations. The current technologies allow a good feasibility, and safety is high. A negative result is suggestive of a very good prognosis, free from hard events at 20 ± 10 months.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
  References Top

1.
Picano E. Stress Echocardiography. 5 th ed. Heidelberg, Germany: Springer Verlag; 2009.  Back to cited text no. 1
    
2.
Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, et al. Stress echocardiography expert consensus statement-executive summary. European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 2009;30:278-89.  Back to cited text no. 2
[PUBMED]    
3.
Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 2007;20:1021-41.  Back to cited text no. 3
    
4.
Nesto RW, Kowalchuk GJ. The ischemic cascade: Temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 1987;59:23C-30C.  Back to cited text no. 4
[PUBMED]    
5.
Council Directive 97/43/Euratom of 30 June, 1997 on health protection of individuals against the dangers of ionising radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official J Eur Communities 1997;180:22-7.  Back to cited text no. 5
    
6.
European Commission. Referral Guidelines for Imaging. Radiation Protection 118. 2001. p. 1-125. Available from: http://www.europa.eu.int/comm/environment/radprot/118/rp-118-en.pdf. [Last accessed on 2007 Jul 28].  Back to cited text no. 6
    
7.
McNeill AJ, Fioretti PM, el-Said SM, Salustri A, Forster T, Roelandt JR. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine stress echocardiography. Am J Cardiol 1992;70:41-6.  Back to cited text no. 7
[PUBMED]    
8.
Picano E, Pingitore A, Conti U, Kozàkovà M, Boem A, Cabani E, et al. Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography. Eur Heart J 1993;14:1216-22.  Back to cited text no. 8
    
9.
Dal Porto R, Faletra F, Picano E, Pirelli S, Moreo A, Varga A. Safety, feasibility, and diagnostic accuracy of accelerated high-dose dipyridamole stress echocardiography. Am J Cardiol 2001;87:520-4.  Back to cited text no. 9
[PUBMED]    
10.
Mathias W Jr., Arruda A, Santos FC, Arruda AL, Mattos E, Osório A, et al. Safety of dobutamine-atropine stress echocardiography: A prospective experience of 4,033 consecutive studies. J Am Soc Echocardiogr 1999;12:785-91.  Back to cited text no. 10
    
11.
Picano E, Ostojic M, Varga A, Sicari R, Djordjevic-Dikic A, Nedeljkovic I, et al. Combined low dose dipyridamole-dobutamine stress echocardiography to identify myocardial viability. J Am Coll Cardiol 1996;27:1422-8.  Back to cited text no. 11
[PUBMED]    
12.
Borges AC, Richter WS, Witzel M, Witzel C, Grohmann A, Baumann G. Combined dipyridamole and dobutamine echocardiography in myocardial hibernation: Comparison with thallium uptake in patients after percutaneous transluminal coronary revascularization under circulatory support. J Am Soc Echocardiogr 2001;14:1057-64.  Back to cited text no. 12
[PUBMED]    
13.
Picano E, Lattanzi F, Masini M, Distante A, L′Abbate A. Usefulness of the dipyridamole-exercise echocardiography test for diagnosis of coronary artery disease. Am J Cardiol 1988;62:67-70.  Back to cited text no. 13
[PUBMED]    
14.
Armstrong WF, Pellikka PA, Ryan T, Crouse L, Zoghbi WA. Stress echocardiography: Recommendations for performance and interpretation of stress echocardiography. Stress Echocardiography Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 1998;11:97-104.  Back to cited text no. 14
[PUBMED]    
15.
Picano E. Stress echocardiography. From pathophysiological toy to diagnostic tool. Circulation 1992;85:1604-12.  Back to cited text no. 15
[PUBMED]    
16.
Ellis SG, Mooney MR, George BS, da Silva EE, Talley JD, Flanagan WH, et al. Randomized trial of late elective angioplasty versus conservative management for patients with residual stenoses after thrombolytic treatment of myocardial infarction. Treatment of Post-Thrombolytic Stenoses (TOPS) Study Group. Circulation 1992;86:1400-6.  Back to cited text no. 16
[PUBMED]    
17.
Madsen JK, Grande P, Saunamäki K, Thayssen P, Kassis E, Eriksen U, et al. Danish multicenter randomized study of invasive versus conservative treatment in patients with inducible ischemia after thrombolysis in acute myocardial infarction (DANAMI). DANish trial in acute myocardial infarction. Circulation 1997;96:748-55.  Back to cited text no. 17
    
18.
Boden WE, O′Rourke RA, Crawford MH, Blaustein AS, Deedwania PC, Zoble RG, et al. Outcomes in patients with acute non-Q-wave myocardial infarction randomly assigned to an invasive as compared with a conservative management strategy. Veterans Affairs Non-Q-Wave Infarction Strategies in Hospital (VANQWISH) Trial Investigators. N Engl J Med 1998;338:1785-92.  Back to cited text no. 18
[PUBMED]    
19.
Barnett PG, Chen S, Boden WE, Chow B, Every NR, Lavori PW, et al. Cost-effectiveness of a conservative, ischemia-guided management strategy after non-Q-wave myocardial infarction: Results of a randomized trial. Circulation 2002;105:680-4.  Back to cited text no. 19
[PUBMED]    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Methods
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1585    
    Printed27    
    Emailed0    
    PDF Downloaded84    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]